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Getting Started with R 

 

Overview 

R is a free statistical software that runs on a variety of platforms including 

UNIX, Windows and MacOS.   It was developed in 1991 in New Zealand by Ross 

Ihaka and Robert Gentleman.  This software offers a variety of statistical and 

graphing techniques as well as producing quality plots that can be used in 

publications.   R is a programming language that is similar to the S language 

developed in Bell Laboratories. This guide is written for those with limited 

computer programming knowledge.   Some say there is a steep learning curve 

for R but once you get the hang of it, it is pretty easy. 

 

Downloading R 

R is available at http://www.r-project.org/. Once you navigate to this website, 

click on CRAN under download packages. 

  

Next scroll down to USA and select a download site.  Any should work but for 

this example we will choose University of California, Los Angeles, CA. 

 

http://www.r-project.org/


 

  

You will now be directed to the UCLA site to download R.  Choose your 

operating system.   

 

Since this will be your first time downloading R, you want to choose the base 

subdirectory. 

Choose your operating system 



 

 

Now you are ready to download R! 

Note: Periodically R is updated and new versions are available.  Version 2.15.1 

was the newest version available at the time this guide was written.  If you are 

using this guide later and there is a new version available, please select that 

version. 

 

When asked if you want to run or save, select Run 



 

 

 

If a security warning comes up, in order to continue select Run once again 

 

Once download is completed, the R Setup Wizard will now appear, select Next 



 

Read the license and select Next again 

 

 

Decide where you want R installed and select Next one more time 



 

Now you need to decide whether to download the 32 bit or the 64 bit version.   

If you are running 32 bit version of windows select the 32 bit option but if you 

are running a 64 bit version of windows select the 64 bit option.  To find out if 

your computer is running 32-bit or 64-bit Windows, do the following: 

1. Open System by clicking the Start button, clicking Control Panel, clicking 

System and Maintenance, and then clicking System.  

2. Under System, you can view the system type. 

Now select Next 

 

Make sure you have No (accept defaults) selected and hit Next 



 

If you would like a shortcut in your start menu, then type in a name for the 

shortcut in the box, if not, select “Don’t create a Start menu folder at the 

bottom of the box. Then select Next 

 

Select the additional tasks you want (these are all optional) and select Next 



 

R in now ready to be installed.  When it has finished installing all components, 

select Finish 

 

 

At this point, if you elected to have a shortcut put on your desktop you can 

open R from there, if not you can select R from your start menu in order to get 

started. All the functions and scripts that are written in the rest of this survival 

guide will work in the basic R interface. There is an Integrated Development 

Environment called R studio that makes working in R easier for some people.  

It can be found and downloaded at www.rstudio.org.  The examples in this 

handout will show screen shots in R, not R studio 

http://www.rstudio.org/


Using R 

R is a dialect of the S language and uses expression to generate outputs.  There 

are five different object types in R;  

 Character ex: “Hello” 

 Numeric  ex: 1.456734, 2.5656565656 

 Integer ex: 1,2,3 

 Complex  ex: (4+3i) 

 Logical ex: ( TRUE, FALSE) 

R is case sensitive, for instance; School, SCHOOL and school are all different 

objects. Here is an example of the R interface 

 

You can enter expressions into R at the prompt (>) or run it from a source file. 

R uses a variety of functions. These functions are words or part of words 

followed by a set of parenthesis.  Some examples are 

class( ) 

hist( ) 



Extra information can be added inside of the parenthesis to give R more 

direction on what to do.   

It is a good idea to add comments to your expressions while working in R so if 

you ever need to go back to look over what you have done or want to use a 

certain expression in the future,  you can easily identify what you are looking 

for.  Comments always start off with # to differentiate it from the rest of the 

code or script. Example 

# This code is used to create a histogram with red bins 

hist(math,col="red") 

 

summary( ) # calculates min, median, mean, max 1st quartile  and  

3rd quartile 

 

 

 

 

 

Getting Data into R 

Now that you have installed R, and understand a little about how R works, the 

next step is getting data into R so you can start to work with and manipulate it.   

There are two ways to get data into R.  You can use data from an existing file 

such as a text file, excel worksheet, or a tab delimited file.  The other way is to 

directly input the data into R. 

Data from an existing file 

Let’s take some example data. 

Example: Fifteen middle school students were selected to take a new math and 

science ability test.  Their gender, grade level and score on the math and 

science section of the test were collected as seen in the table below. Let’s call 

this data schools. 



Math Science Gender Grade 

85 94 2 6 

62 83 1 7 

88 85 2 7 

85 83 2 8 

38 78 2 7 

88 82 2 6 

83 31 1 8 

83 86 2 7 

82 66 1 8 

53 75 1 8 

68 86 1 6 

88 81 2 8 

81 71 2 7 

84 50 2 7 

82 88 2 6 

Note: Gender is coded 1 for male 2 for female 

When using existing data sets in R, it is helpful to have one folder on your 
computer that contains all the data you use.    You want to set the working 

directory of R to this folder.  To find your working directory use the 

getwd()function. Type getwd() after the prompt and press enter.  For this 

function you do not have to put anything in the parentheses. After you press 

enter you will see your working directory.  This is where you want to place your 
data folder because R will only look in this folder for files unless you explicitly 

specify a new place to look, which will be shown later. If you want to change 
your working directory to another folder, you can go to the File menu then 
selection Change dir.   This will have to be done each time you start R as the 

change is not permanent.  Make sure the data you want to access in the folder 
on that your working directory is set to and then you can use the following 

commands to access data. 

schools<-read.table(“schools.txt”, header=TRUE) 

# header==TRUE indicates that the data table has a header 

For a comma separated value (.csv) file use 

schools<-read.csv(“schools.csv”, header=TRUE) 

If you have your data saved elsewhere on your computer other than in your 

working directory.  To call a data file into R, use the one of the read functions.  

The function you would use depends on the type of data you have.  You will 

need to edit the function and make sure you have the right address to the file . 

For instance, the file is saved in the data folder in the C drive as a text (.txt) file 

on my computer.  The function to use to call it into R is 



Remember R is very sensitive, if you mistype even the smallest thing you 

might receive error messages. 

schools <- read.table("c:/data/schools.txt", header=TRUE) 

For a comma separated value (.csv) file use 

schools <- read.csv("c:/data/schools.csv", header=TRUE) 

For tab delimited file (.prn) use 

schools <- read.delim("c:/data/schools.prn", header=TRUE) 

If you want to import an excel file, save it as a .csv or .txt file first, then use one of the above 

mentioned prompts. 

If you have your data saved under my documents, then your prompt might look something like 

this 

schools <- read.csv("c:/documents/data/schools.csv", header=TRUE) 

Or for a specific class you might use 

schools <- read.table("c:/EPRS8530/schools.txt", header=TRUE) 

The main thing to remember when calling files from elsewhere on your computer is to correctly 

specify that path that will take R to the document.  After calling your data, you can make sure 

it was correctly called into R.   

schools #shows the data 

Now you need to attach the data in order to work with it.  This is done with attach() function. 

attach(schools) # attaches the data 



 

 

 

 

 

Inputting Data 

It is a little more difficulty to input large amounts of data into R.  It might be 

easier to put it in another format and then call it into R.  If you have a small 

data set, here is an example of how you would input it into R. We will use this 

data set form the previous example.  Again, remember R is very sensitive.  

Make sure there are no spaces when you type and ensure that you type it as it 

is written to decrease the amount of error messages you receive. When 

inputting data you will use <- which is the assignment operation and c() 

which creates a vector.  When used together you are in essence creating a 

vector and assigning it a name. 

# input data manually into R  

math<-c(85,62,88,85,38,88,83,83,82,53,68,88,81,84,82) 



science<-c(94,83,85,83,78,82,31,86,66,75,86,81,71,50,88) 
gender<-c(2,1,2,2,2,2,1,2,1,1,1,2,2,2,2) 
grade<-c(6,7,7,8,7,6,8,7,8,8,6,8,7,7,6)  
schools<-data.frame(math,science,gender,grade) 

schools 

 

This should give you an output like this in R 

 
 

 

 

Using subsets of data 

There might be a time that you want to use only a subset of your data.  In 

order to do this use the subset( ) command. For example, to create a new 

subset of a data frame called schools that only includes values in which grade 

is equal to 6 which was coded for 6th grade students 

schools2<- subset(schools, grade==6)  # subsets data 

schools2  #Shows new data table 

The output in R should look like this 



 

 

Other examples 

schools3<- subset(schools, math>=76) #Selects math scores 

greater or equal to 76 

 

schools4<- subset(schools, science < 86) # Selects science 

   scores less than 86 

If you want to work with this new data set, make sure you use the attach() 

function.  For example attach(schools2) will allow you to work with  the 

new data that only has scores of students in the 6th grade.  Operators that you 

can use are 

==  # exactly equal to 

>  # greater than 

>=  #greater than or equal to 

<  # less thank 



<=  # less than or equal to 

!=  # not equal to 

Saving work 

There are different ways to save your work in R.  One way is by going to the File 

menu and Save to File. This will save what you are currently working on as a 

text (.txt) file. When you open R again you can go to File, Display files, and 

select the file you want displayed.  Then you can copy and paste what you want 

in the command window.  Likewise you can save any graphical output by 

selecting the window with the graph displayed and going to File, Save As, 

selecting the file type and naming the file. This guide will go over saving and 

opening scripts in the Inferential Statistics section. 

 

 



Descriptive Statistics 

Now that you have data to work with, let’s move on to descriptive statistics.  

Remember in order to work with the data you must attach it first with the 

attach() function. 

The following functions are often used to calculate descriptive statistics 

For example, the summary() function produces  min, median, mean, max, 1st 

quartile  and 3rd quartile of all variable in schools data set.  Example, 

summary(schools)gives the following output. 

 

 Another function that can be used is the describe() function found in the 

psych library.  This function produces the item name, item number, number of 

valid entries, mean, standard deviation, median, MAD ( median absolute 

deviation), minimum value, maximum value, skewness, kurtosis, and se ( 

standard error)  This can be done using the following commands, 

 library(psych) # loads psych library functions 

 describe(schools) # produces the aforementioned information 

To get the means for variables in the schools data frame.  



sapply(schools, mean, na.rm=TRUE)  

# na.rm=TRUE excludes missing values 

 

 You can also use sd, var, min, max, med, range, and quartile instead 

of mean to get those values for variable in the data 

sapply(schools, var, na.rm=TRUE)  

sapply(schools, range, na.rm=TRUE)  

 

Other functions to use are as follows.  Make sure you put the variable name 

that you want the information on inside the parentheses.  

 min() # gives minimum value 

 max()  # gives maximum value 

 range()  # gives range 

 median() # gives median 

 mean() # gives mean 

 sd()  # gives standard deviation 

 var() # gives variance 

The table() function produces frequency of a given variable. Put the 

variable name inside the parentheses. 

To produce crosstabulations of variables gender and grade use 

table(gender, grade) #gender row, grade column 

To calculate relative frequency of a given variable, you must make a new 

variable first then write a formula for how to calculate relative frequency.  

Example, calculating relative frequency for the grade variable is schools first 

type; 

grade2=schools$grade   # makes a new variable grade2 which is  

the same as the variable grade in 

schools  



 

      

Next you need to calculate the frequency so type 

grade2.freq=table(grade2)     

Next type 

grade2.relfreq=grade2.freq/nrow(schools)  

This makes grade2.relfreq equal to grade2.freq divided by the number of rows 

in the table, thus calculation the relative frequency. Lastly, 

 grade2.relfreq  

displays values for grade relative frequencies  

 

Cumulative frequency is easy once you have established the formula for 
relative frequency. To find the cumulative frequency for the grade variable from 

the previous example use 

cumsum( ) 

 So cumsum(grade2.relfreq) will give the cumulative frequency of the 

grade2.relfreq variable which was established in the above example.  This will 

show the cumulative sum of the grade variable from the schools data.  

 

Graphing 

This section will go over some common graphs used for descriptive statistics.  

These graphs will be displayed in a separate graphics window in R.  You can 

resize this window with the windows() function.  For example, if you want a 

window with a width of 15 and height of 2 you would use this expression 

windows(15,2) 

However this will make a long skinny graph.  A good size to go with would be a 

width and a height of 7.  To so this you would type 

windows(7,7) 



Histogram 

Creating a histogram in R is relatively easy.  A basic histogram can be 

produced with the hist() function where the variable name goes into the 

parenthesis.  This will produce a histogram in the graphics window. Again 

make sure your data is attached using the attach() function. For example 

hist(math) gives the following output 

 

We can improve this histogram with added expressions 

xlab= “ “  # labels x axis 

ylab=“ “  # labels y axis 

main= “ “  # give the graph a title 

col= “ “  # colors the histogram bins Available colors 

include red, blue, green, yellow, orange, purple 

breaks=  # tells the sections to break the x axis into 

xlim=c() # sets the range of the x axis, values go inside 

the parenthesis separated by comma 

ylim=c() # sets the range of the y axis, values go inside 

the parenthesis separated by comma 

 



Example 

hist(math, xlab="math scores", ylab="frequency", main="Math 

Scores Histogram", col="red", breaks=5, xlim=c(0,100),  

ylim=c(0,15)) 

#creates a histogram with red bins, labels x axis “math 

#scores”,labels y axis “frequency”,labels graph “math score 

#histogram”, x axis range 1-100, y axis range 0-15, breaks x 

#axis into 5 sections 

 

 

 

 

Bar Graph 

Bar graphs are also easy to create in R.  First, however, the number of 

observations must be counted.  To plot a bar graph of the number of students 

in each grade, the following expression would be used 

counts <- table(grade) #counts the number of students in each 

grade 

barplot(counts, main= “Grade Distribution", xlab="Grade level", 

col=”green”) 
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To convert to a horizontal bar graph use the expression horiz=TRUE 

barplot(counts, main="Grade Distribution", ylab="Grade 

Level",col="green", horiz=TRUE) 

6 7 8

Grade Distribution

Grade Level

0
1

2
3

4
5

6



 

Box plot 

Using the boxplot() function will produce a box plot in R.  You can continue 

to use the xlab, ylab, main, xlim, ylim expressions to improve the look 

of your box plot. Example 

boxplot(math, ylab="math scores", main="Math scores box plot") 
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Scatterplot 

The plot(x,y) function will produce a simple scatter plot where x is the 

variable on the x axis and y is the variable on the y axis.  The following 

expressions can also be used to improve the graph as with the histogram, and 

box plot xlab, ylab, main, xlim, ylim. The expression 

abline(lm(x~y)) will produce a line of best fit on the same graph as the 

scatter plot. 

 

Example: 

plot(science,math, main="Scatterplot of Science and Math", 

xlab="Science Scores", ylab="Math Scores",  

abline(lm(science~math), col="red")) 
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The function cor(x,y) will give the  correlation coefficient between two 

variables x and y but it will not do a significance test and give and value. 

For example cor(science,math) gives -0.0681767. 

Linear Regression 

 To get the linear regression line, multiple steps are needed and the function 

lm() is used.  For example, if you wanted to find the regression equation 

between the science and math variable you would take the following steps 

regression.science.math=lm(science~math) 

 # this names the regression line and identifies the variables used 
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summary(regression.science.math)  

# produces information on the regression line 

The following output is produced (minus the highlights) 

Call: 

lm(formula = science ~ math) 

Residuals: 

    Min      1Q  Median      3Q     Max  

-44.458  -3.660   5.965   9.667  18.693  

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) 81.69288   23.78064   3.435  0.00443 ** 

math        -0.07512    0.30490  -0.246  0.80923    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 16.92 on 13 degrees of freedom 

Multiple R-squared: 0.004648,   Adjusted R-squared: -0.07192  

F-statistic: 0.06071 on 1 and 13 DF,  p-value: 0.8092  

This is a lot of information but from this we can see the slope of the line is -

0.07512 and the intercept is 81.69288. We can also see the two stars 

correspond to a significance value of 0.001. 



Inferential Statistics 

We will now move on to inferential statistics.  The first test we see is the one 

sample t-test.   

Example problem 

The principal of Anywhere Middle School wanted to see if the mean science 

scores of her students differed from the population mean of 75. She used the 

scores of 15 students in grades 6-8. 

Student Math Science Gender Grade 

1 85 94 2 6 

2 62 83 1 7 

3 88 85 2 7 

4 85 83 2 8 

5 38 78 2 7 

6 88 82 2 6 

7 83 31 1 8 

8 83 86 2 7 

9 82 66 1 8 

10 53 75 1 8 

11 68 86 1 6 

12 88 81 2 8 

13 81 71 2 7 

14 84 50 2 7 

15 82 88 2 6 

Note: Gender is coded 1 for male 2 for female 

 

This is the same data set, schools, which we used previously.  Please refer to 

the section Getting Started with R to see how to input or recall the data to work 

with it.  Remember to attach the data set before continuing. 

 The one sample test function is t.test(). Our input will be 

# mu is the population mean & the confidence level ( conf.level) 

#is at 95% 

t.test(science, mu=75, conf.level=.95)  

 

 



We then get the following output 

One Sample t-test 

data:  science  

t = 0.2212, df = 14, p-value = 0.8281 

alternative hypothesis: true mean is not equal to 75  

95 percent confidence interval: 

 66.88334 84.98333  

sample estimates: 

mean of x  

 75.93333 

From this we can see t(.05, 14)  = .22, p = .83 and we can be 95% sure that  

confidence interval is 66.88 to 84.98.  We fail to reject the null hypothesis and 

concluded that there is no significant difference between the population mean 

score and the mean scores of the students. 

 

Independent t-test 

The principal of Anywhere Middle School wanted to see if there was a difference 

in the mean math scores of boys and girls at the school.  She used the scores 

of 15 students in grades 6-8. 

The independent t-test function is relatively easy to use in R.  There are two 

possibilities 

# independent 2-group t-test 

t.test(y~x) # where y is numeric and x is coded into 2 variables 

 

# independent 2-group t-test 

t.test(y1,y2) # where  both variables ,y1 and y2, are numeric 

 



First we need to test for equal variance with an F test.  The function for this is 

var.test() 

#  We have to compare the means of math score if the gender is 1  

# and the math scores if gender is 2 

var.test(math[gender==1], math[gender==2]) 

 

We then get the following output 

F test to compare two variances 

data:  math[gender == 1] and math[gender == 2]  

F = 0.7397, num df = 4, denom df = 9, p-value = 0.8237 

alternative hypothesis: true ratio of variances is not equal to 

1  

95 percent confidence interval: 

 0.1567765 6.5866472  

sample estimates: 

ratio of variances  

         0.7396836 

From this we can conclude that the variances is the same for both scores (p = 

0.82, F = .7397).  So we can continue with the t test. 

 

Since gender is already coded into two variables we will use the t.test(x~y) 

# t test with equal variance ( var.equal=T)  

#and with α=.05 (conf.level=.95) 

 

t.test(math~gender, var.equal=T, conf.level=.95) 

 

 

 



We then receive the following output 

 

        Two Sample t-test 

 

data:  math by gender  

t = -1.3417, df = 13, p-value = 0.2027 

alternative hypothesis: true difference in means is not equal to 

0  

95 percent confidence interval: 

 -27.668069   6.468069  

sample estimates: 

mean in group 1 mean in group 2  

           69.6            80.2 

From the output, we fail to reject the null hypothesis and concluded that there 

is no significant difference between the mean math scores of the boys and girls 

in Anywhere Middle school. 

 

Dependent T-test   

Using the same data, the principal at Anywhere Middle wants to see if the 

mean science scores differ from the mean math scores. 

In order to do this we will use the dependent t test.   In R this is very similar to 

the independent t-test with an added part to let the function know that data is 

paired. 

 

# dependent t test with α=.05 

t.test(math, science, paired=TRUE, conf.level=.95) 

 



Here is the output 

 

Paired t-test 

data:  math and science  

t = 0.1245, df = 14, p-value = 0.9027 

alternative hypothesis: true difference in means is not equal to 

0  

95 percent confidence interval: 

 -11.89564  13.36230  

sample estimates: 

mean of the differences  

              0.7333333 

From the output we fail to reject the null hypothesis and concluded that there 

is no significant difference between the mean scores of the science and math 

test. 

 

Effect size 

The best way to calculate effect size is by writing a script.  It is beneficial to use 

a script because we can type in the different calculations together and run it at 

one time instead of typing in one line at a time, waiting for the output and 

using that in the next line.  We can also save this script for later use. 

To write a script we will go to File→New script. This will open a new blank 

window.  In this window is where you type the script.  Here is an example of an 

effect size calculator 

# Effect Size calculator 

s1=sd(math[gender==1]) 

# calculates standard deviation of boys math scores 

s2=sd(math[gender==2]) 



 # calculates standard deviation of girls math scores 

n1=5 #number of boys 

n2=10 # number of girls 

xbar1=mean(math[gender==1])  

#calculates mean of boys math scores 

xbar2=mean(math[gender==2]) 

#calculates mean of girls math scores 

es=((xbar1-xbar2)/sqrt((((s1^2)*(n1-1))+((s2^2)*(n2-1)))/(n1+n2-

2))) 

#calculates effect size 

While the script window is open, go to Edit→Run all, you will see the script run 

in the other R window.  When it is complete type  es  ( In order to output the 

results of the Effect Size script) and press enter and you will get  

[1] -0.7348691 

So your effect size is -0.735. 

 Correlation 

Now let’s test to see if there is a correlation between the math and science 

scores of the 15 students at Anywhere Middle Schools.  In order to find the 

significance levels related to correlations we will use the rcorr (x,y) 

command.  This command, however, is not in the initial commands 

downloaded so we must download the Hmisc package.   Here are the steps to 

do this. Go to Packages →Install Package(s). Then select USA(CA 1) 



 

A list of available packages will show up.  Scroll down and select the Hmsic 

package. 

 



 

The package will now be loaded. As you can see there are a plethora of 

packages available.  As you progress with R, you can use the following website 

to identify packages that might be useful for you 

http://cran.r-project.org/web/packages/available_packages_by_name.html 

 

Now we need to load the Hmisc package and run the correlation 

library( Hmisc)  

# loads the Hmisc package 

rcorr(math, science, type= “pearson”) 

# runs a correlation with significance levels as part of the 

#output x is math and y is #science type can be pearson or 

#spearman 

We then get the following output 

  x     y 

x  1.00 -0.07 

y -0.07  1.00 

 

n= 15  

 

 

P 

  x      y      

x        0.8092 

y 0.8092        

 

We can see the correlation coefficient is -0.07 and the p = .809.  From this we 

can conclude that there is no significant correlation between the math and 
science scores of 15 students at Anywhere Middle. 

http://cran.r-project.org/web/packages/available_packages_by_name.html


ANOVA 

Now let’s move onto ANOVA.  We are going to use a new data set for these 

tests.  A researcher wants to examine the effectiveness on three types of 

professional development on teachers. Twelve teachers from two schools were 

given one of three types of professional development, online, in person or a 

hybrid model.  Teachers were tested at the beginning and at the end of the 

professional development. We will call this data “profdev” 

teacher pre post school PD Gender 

1 70 72 A O M 

2 76 79 A O F 

3 80 80 B O F 

4 84 88 B O M 

5 78 76 A P M 

6 98 95 A P M 

7 80 84 B P F 

8 86 87 B P F 

9 86 88 A H F 

10 70 75 A H M 

11 87 91 B H F 

12 75 89 B H M 

O: online   P: in person     H: hybrid 

 

Since this is a new dataset, please refer to the section Getting Started with R to 

see how to input or recall the data to work with it.  Remember to attach the 

data set before continuing. 

* Note: The following functions will use sequential sum of squares if your data 

is not balanced (the same number in each group) it will produce a different 

output than in other programs such as SPSS. 

Problem 

The researcher wants to see if there is a difference in the mean scores of the 

three types of professional development.   

We will start with Levene’s test of Equal variance.   In order to conduct Levene’s 

test we must fist load the car package.  On the R tool bar go to packages 

→Load Packages →car. Now we are ready to use Levene’s Test.  

leveneTest(y=post, group=PD)  



We get the following output 

Levene's Test for Homogeneity of Variance (center = median) 

      Df F value Pr(>F) 

group  2  0.0789 0.9247 

       9            

 So we can assume equal variance and continue with the ANOVA. 

There are a few commands for ANOVA one of which is aov(y~x) where y is the 

dependent variable and x is the group factor. When using the aov command, R 

assumes the x variable is categorical.  If you have used numbers for this 

variable, i.e. 1= online, 2= in person 3= hybrid, R will treat your entries as 

numerical and produce the incorrect results. 

aov(post~PD)  

We get the following output. 

Call: 

   aov(formula = post ~ PD) 

Terms: 

                      PD Residuals 

Sum of Squares   92.1667  472.5000 

Deg. of Freedom        2         9 

Residual standard error: 7.245688  

Estimated effects may be unbalanced 

 

By using the summary() function we can get more information on the ANOVA 

model 

summary(aov(post~PD))  

# this summarizes and displays the ANOVA calculations 

 

Now we get this output 

            Df Sum Sq Mean Sq F value Pr(>F) 

PD           2   92.2   46.08   0.878  0.448 

Residuals    9  472.5   52.50                

 

From here we can see the degrees of freedom, Sum of Squares, Mean Squares 

and F value.  We can conclude that there is not a statistically significant 



difference between the scores in the three types of professional development, 

F(2,9) = .88, p = .45. 

 

Tukey’s Post Hoc Test 

Let’s say we found a statistically significant difference and needed to do a post 

hoc test to see where the difference lies.  We would use the TukeyHSD () 

command. 

TukeyHSD(aov(post~PD)) 

 

We get the following,  

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = post ~ PD) 

 

$PD 

               diff        lwr       upr     p adj 

online-hybrid -6.00 -20.304772  8.304772 0.4980835 

person-hybrid -0.25 -14.554772 14.054772 0.9986884 

person-online  5.75  -8.554772 20.054772 0.5251277 

 

 This produces the difference in the means, the lower and upper bounds and 

the p value.  We can see that none on the interactions are statistically 

significant which is what we expected. 

 

Two Way ANOVA 

Using the same Data set, ‘profdev”, we can perform a Two Way ANOVA 

analysis.  This time the researcher wants to look at the effects of school and 

professional development type of scores.  We will use the same aov() command 

but add extra syntax inside 

> aov(post~school*PD)  

# school*PD will give the interaction effect 



 

We get the following output 

 

Call: 

   aov(formula = post ~ school * PD) 

 

Terms: 

                  school       PD school:PD Residuals 

Sum of Squares   96.3333  92.1667   48.1667  328.0000 

Deg. of Freedom        1        2         2         6 

Residual standard error: 7.393691  

Estimated effects may be unbalanced 

 

In order to get the full details we need to use the summary() command. Inside 

of the summary command is the same syntax from aov() 

 

> summary(aov(post~school*PD)) 

            Df Sum Sq Mean Sq F value Pr(>F) 

school       1   96.3   96.33   1.762  0.233 

PD           2   92.2   46.08   0.843  0.476 

school:PD    2   48.2   24.08   0.441  0.663 

Residuals    6  328.0   54.67            

 

 From the F statistics, we can see that neither school, F(1,6)=1.76, professional 

development, F(2,6) = .84or the interaction of the two, F(2,6) = .44 are 

statistically significant. 

Factorial ANOVA 

We can continue to use the same data and look at more interactions.  This time 

we want to see the effect of school, professional development and gender on 

scores.  This will be a 2X3X2 ANOVA with three independent variables and one 

dependent variable.  The syntax is very similar to that of the two way ANOVA 

 

aov(post~school*PD*gender) 

# this test the interaction between school, PD and gender 

# it will produce all two way and three way interactions 



Here is the output 

Call: 

   aov(formula = post ~ school * PD * gender) 

 

Terms: 

                   school        PD    gender school:PD 

school:gender PD:gender 

Sum of Squares   96.33333  92.16667   0.66667  72.00000      

84.50000  32.00000 

Deg. of Freedom         1         2         1         2             

1         1 

                school:PD:gender Residuals 

Sum of Squares           2.00000 185.00000 

Deg. of Freedom                1         2 

 

Residual standard error: 9.617692  

2 out of 12 effects not estimable 

Estimated effects may be unbalanced 

 

In order to get the full details we need to use the summary() command again. 

 

> summary(aov(post~school*PD*gender)) 

                 Df Sum Sq Mean Sq F value Pr(>F) 

school            1  96.33   96.33   1.041  0.415 

PD                2  92.17   46.08   0.498  0.667 

gender            1   0.67    0.67   0.007  0.940 

school:PD         2  72.00   36.00   0.389  0.720 

school:gender     1  84.50   84.50   0.914  0.440 

PD:gender         1  32.00   32.00   0.346  0.616 

school:PD:gender  1   2.00    2.00   0.022  0.897 

Residuals         2 185.00   92.50                

 

 From these results we can see that all the factors and all the interactions 

produce non significant results. 

 

 

 



ANCOVA 

In order to do an ANCOVA, we are going to use the professional development 

pre test scores as a covariate.  We are going to see if there is a difference in the 

mean post test scores given the type of professional development while using 

the pre test score as a covariate. 

Before we can do ANCOVA we have to test the regression of slopes.    One way 

to do this is to see if the interaction between the covariate and the treatment 

(group) is significant.  If it is not significant then we can continue with the 

ANCOVA (Tabachnick & Fidell 2001). 

 

Test of regression slopes 

slopes<-aov(post~PD*pre, data=profdev) 

> summary(slopes) 

Here is the output 

            Df Sum Sq Mean Sq F value Pr(>F)    

PD           2   92.2    46.1   2.962 0.1274    

pre          1  368.7   368.7  23.702 0.0028 ** 

PD:pre       2   10.4     5.2   0.336 0.7276    

Residuals    6   93.3    15.6                   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Looking at the interaction of PD and Pretest we can see that it is not significant 

and therefore we can assume equal regression slopes and continue with the 

ANCOVA. 

We will use the same aov() command.  Make sure that the covariate it after 

the grouping variable.  If it is typed in the reverse order, it will produce 

incorrect results. 

Input 

ancova<-aov(post~PD + pre) 

summary(ancova) 

 



Output 

            Df Sum Sq Mean Sq F value   Pr(>F)     

PD           2   92.2    46.1   3.552 0.078683 .   

pre          1  368.7   368.7  28.424 0.000701 *** 

Residuals    8  103.8    13.0                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The results show that professional development is not statistically significant 

given the pre test scores as a covariate.  

 

At this point there does not appear to be a function in R that will easily 

conduct a Bryant-Paulson Post Hoc test.  However, there is a great Bryant 

Paulson Post Hoc calculator by Dr. T. Chris Oshima that can be found at 

http://education.gsu.edu/coshima/statistics_2.htm 

 

Repeated Measure ANOVA 

  Test scores were collected at three different times for two different groups, 

online class and traditional class. For this example, a repeated measure 

ANOVA will be used which has one between factor, group and one within 

factor, time.  The dependent variable is test scores. This data set will be called 

“repanova” 

id group score time   id group score time 

1 1 71 1   5 2 57 1 

1 1 51 2   5 2 87 2 

1 1 33 3   5 2 45 3 

2 1 65 1   6 2 54 1 

2 1 47 2   6 2 93 2 

2 1 25 3   6 2 53 3 

3 1 73 1   7 2 100 1 

3 1 45 2   7 2 93 2 

3 1 29 3   7 2 27 3 

4 1 69 1   8 2 60 1 

4 1 43 2   8 2 95 2 

4 1 27 3   8 2 51 3 

 

 



# calls up and attaches the data file 

repanova<-read.csv("repanova.csv", header=TRUE) 

attach(repanova) 

 

#changes variables to factors (categorical variables) in order 

to use repeated measure ANOVA 

> repanova<-within(repanova, { 

 group<-factor(group) 

 time<-factor(time) 

 id<-factor(id) 

}) 

We know that one difference between the a one way ANOVA and repeated 

measures ANOVA is the error so this must be accounted for when we use the 

aov() command. 

repanova.aov <- aov(score ~ group * time + Error(id), data = 

repanova) 

> summary(repanova.aov) 

 

And here is the output 

Error: id 

          Df Sum Sq Mean Sq F value   Pr(>F)     

group      1 2340.4  2340.4   59.86 0.000245 *** 

Residuals  6  234.6    39.1                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Error: Within 

           Df Sum Sq Mean Sq F value  Pr(>F)     

time        2   5700  2850.0  19.756 0.00016 *** 

group:time  2   2287  1143.4   7.926 0.00640 **  

Residuals  12   1731   144.3                     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



We can see that time, group and the interaction between time and group are all 

significant so we must do a Post Hoc test to see where the significance lies. 

However at the writing of this guide there does not appear to be a script for a 

Post Hoc test for repeated measure ANOVA. There are many calculators online.  

The one that is used in this example is from Graphpad and can be found at 

http://graphpad.com/quickcalcs/posttest1.cfm.  

This is the output from the site. 

Confidence intervals 

  Comparison     Mean1 - Mean2     95% CI of difference   

  1: test1-2   - 0.625   - 10.903  to  + 9.653   

  2: test 1-3   + 32.375   + 22.097  to  + 42.653   

  3: test 2-3   + 33.000   + 22.722  to  + 43.278   

  

Statistical Significance 

  Comparison     Significant? (P <0.05?)   t 

  1: test1-2 No    0.200   

  2: test 1-3 Yes    10.355   

  3: test 2-3 Yes    10.555   

  

 

It can be concluded that along with a statistical significance between the 

groups and a statistically significance interaction, there is also significance 

between tests 1 and 3 and test 2 and 3.  

 

 

 



Linear Regression 

We will now move onto regression. We are going to use a new data set for these 

tests.  A researcher wanted to examine how well certain variables predicted the 

score on a math final.  This data set is called “mathfinal” 

ID math.final math.midterm hours SAT.math 

1 73.76 77.16 1 525.17 

2 74.83 73.45 2 464.47 

3 88.05 78.43 3 216.68 

4 92.16 86.33 6 542.42 

5 75.08 75.16 6 512.81 

6 88.52 73.46 8 496.01 

7 74.84 70.13 2 529.1 

8 75.47 75.91 1 541.82 

9 75.15 75.09 2 479.18 

10 74.93 75.6 2 560.94 

11 83.52 75.27 5 461.19 

12 92.46 70.33 10 464.04 

13 82.9 72.25 5 481.39 

14 82.61 76.58 2 528.97 

15 74.4 74.18 2 483.09 

16 85.36 74.28 8 520.95 

17 73.94 72.33 2 519.25 

18 75.579 76.98 1 510.4 

19 80.76 75.6 6 468.89 

20 67.61 74.51 1 488.22 

21 74.71 72.88 1 539.81 

22 88.12 74.78 7 494.07 

23 75.66 75.58 0 510.38 

24 77.72 73.68 5 467.93 

25 78.38 73.74 4 544.23 

 

 

You can refer to the section Getting Started with R to see how to input or recall 

the data to work with it.  Remember to attach the data set before continuing. 

 

 



Simple Regression 

We will start with a simple linear regression and see how well the number of 

hours studied predicts the math final grade. 

Here are the commands 

> regmathfinal<-lm(math.final~hours) 

> summary(regmathfinal) 

Here is the output 

Call: 

lm(formula = math.final ~ hours) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-8.7377 -1.9057 -0.6677  1.1513  9.8663  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  72.5497     1.4264  50.863  < 2e-16 *** 

hours         1.8780     0.3134   5.993 4.12e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 4.198 on 23 degrees of freedom 

Multiple R-squared:  0.6096,    Adjusted R-squared:  0.5927  

F-statistic: 35.92 on 1 and 23 DF,  p-value: 4.124e-06 

 

 The bottom of the output shows us that the overall regression model is 

significant, F (1,23)= 35.92, p = .00.  The intercept is 72.5497 and the 

regression coefficient is 1.8780.  The output also produces the t values and the 

p values. From the F statistic and its associated p value, we can see that the 

number of study hours is a statistically significant predictor of the math final 

grade.    

Multiple Regression 

We can simply add on more predictors to go from simple to multiple regression.  

This time we will see how well math midterm grade and number of hours 

studied predicts the math final grade. 

 



Command 

regmathfinal2<-lm(math.final~math.midterm + hours) 

> summary(regmathfinal2) 

Here is the output 

Call: 

lm(formula = math.final ~ math.midterm + hours) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-9.0259 -1.7290 -0.1035  1.9939  7.4799  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)   20.0849    18.3849   1.092   0.2864     

math.midterm   0.6971     0.2437   2.860   0.0091 **  

hours          1.9384     0.2744   7.065 4.36e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 3.664 on 22 degrees of freedom 

Multiple R-squared:  0.7154,    Adjusted R-squared:  0.6896  

F-statistic: 27.66 on 2 and 22 DF,  p-value: 9.905e-07 

 

The overall regression equation is significant (F(2,22) = 27.66, p = .00) and both 

math midterm grade and number of hours studied is significant (t = 2.86, p = 
.01, t = 7.07, p = .00).  Note: the adjusted R2 that is given is according to 

Wherry’s formula. 
 

Here are some more useful commands for simple and multiple regression 
 

coefficients(regmathfinal) # model coefficients 

confint(regmathfinal, level=0.95) # CIs for model parameters  

fitted(regmathfinal) # predicted values 

residuals(regmathfinal) # residuals 

anova(regmathfinal) # anova table 

If you would like to get the beta coefficients, you can load the QuantPsyc 

package and use the lm.beta() function.  For example 

lm.beta(regmathfinal2) produces the following beta coefficients 

math.midterm        hours  

   0.3262640    0.8058974 



Stepwise Regression 
R uses the AIC when conducting forward, backward or stepwise regression.  

Remember, these forms of regression come with their own flaws.    First make 

sure you have the MASS package loaded by going to packages → load 

package→ MASS.  The commands for forward, backward and stepwise are the 

same just type in either forward, backward or both after direction to 

indicate which you will use 

Command 

library(MASS) 

> regmathfinal3<-lm(math.final~math.midterm + hours + SAT.math) 

# Stepwise Regression 

> step<-stepAIC(regmathfinal3, direction="both") 

 

Here is the output 
 

Start:  AIC=65.9 

math.final ~ math.midterm + hours + SAT.math 

 

               Df Sum of Sq    RSS    AIC 

<none>                      253.42 65.904 

- SAT.math      1     41.98 295.41 67.737 

- math.midterm  1     98.86 352.28 72.139 

- hours         1    624.20 877.62 94.959 

 

Now to see what the final model is, we will use the following command 
 

> step$anova 

 

Here is the output 
 

Stepwise Model Path  

Analysis of Deviance Table 

 

Initial Model: 

math.final ~ math.midterm + hours + SAT.math 

 

Final Model: 

math.final ~ math.midterm + hours + SAT.math 

 

 

  Step Df Deviance Resid. Df Resid. Dev      AIC 

1                         21   253.4215 65.90446 

 



Comparing models 

If we would like to compare the model with study hours and math mideterm 

grade as the predictors, regmathfinal2, with the output we just received 

from the step wise regression regmathfinal3.  This can be done using the 

anova() command 

Command 

anova(regmathfinal2, regmathfinal3) 

Output 

Analysis of Variance Table 

 

Model 1: math.final ~ math.midterm + hours 

Model 2: math.final ~ math.midterm + hours + SAT.math 

  Res.Df    RSS Df Sum of Sq      F  Pr(>F)   

1     22 295.41                               

2     21 253.42  1    41.985 3.4791 0.07618 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

We can see that the difference between the models is not statistically 
significant, F = 3.48, p = .08. 

 

Part (semipartial) and Partial Correlation 

The lm.sumSquares() function in the lmSupport package will give  the delta 

R2  (dR-sqr) which is the semipartial  or part correlation squared and the  pEta-

sqr which is the partial correlation squared.  For example,  

#this function gives more information on the regression model 

#and we can use it to obtain part and partial correlations 

> lm.sumSquares(regmathfinal3)  

 

Output 
                     SS dR-sqr pEta-sqr df       F p-value 

(Intercept)    37.33764 0.0360   0.1284  1  3.0940  0.0931 

math.midterm   98.86261 0.0952   0.2806  1  8.1923  0.0093 

hours         624.20135 0.6013   0.7112  1 51.7250  0.0000 

SAT.math       41.98470 0.0404   0.1421  1  3.4791  0.0762 

Error (SSE)   253.42150     NA       NA 21      NA      NA 

Total (SST)  1038.12495     NA       NA NA      NA      NA 



We can use this to calculate the part and partial correlation.  For instance, the 

part or semipartial correlation of hours is √. 6013 = .7754 and the partial 

correlation for the same variable is√. 7112 = .8433. 
 

Model Validation 
 

R gives you Wherry’s adjusted R2 and you can easily calculate Steins adjusted 
R2.   R will calculate the PRESS statistics which you can use to get the PRESS 

R2.  In order to do this you need to install the MPV package. Within this 

package is the PRESS() function which will calculate the PRESS statistic.  

 
library (MPV) 

PRESS(regmathfinal) 

 

 Output 
[1] 464.0054 

 

Use this to calculate the PRESS R2 

  

t test and ANOVA using Linear Regression 
 

Since and ANOVA is a special type of a linear regression, we can conduct the 

same analysis using the lm() function instead of the aov() function.  First we 

have to dummy code the variables in order for it to work.  We will use the same 

data as that is in the “profdev” file but it will be dummy coded.  This was the 
old data set 

 
teacher pre post school PD Gender 

1 70 72 A O M 

2 76 79 A O F 

3 80 80 B O F 

4 84 88 B O M 

5 78 76 A P M 

6 98 95 A P M 

7 80 84 B P F 

8 86 87 B P F 

9 86 88 A H F 

10 70 75 A H M 

11 87 91 B H F 

12 75 89 B H M 

 
  We will use school and PD in the analysis so these will be the two variables 

that will be dummy coded. 
 



 
New data set “profdev2” dummy coded 
teacher pre post school PD1 PD2 

1 70 72 0 1 0 

2 76 79 0 1 0 

3 80 80 1 1 0 

4 84 88 1 1 0 

5 78 76 0 0 1 

6 98 95 0 0 1 

7 80 84 1 0 1 

8 86 87 1 0 1 

9 86 88 0 0 0 

10 70 75 0 0 0 

11 87 91 1 0 0 

12 75 89 1 0 0 

 

 

We will use the lm() function for the t-test.  This will look at the difference in 

the mean scores for the two different schools. 
 
 

> model1<-lm(post~school) 

> summary(model1) 

 

Here is the output 
 
Call: 

lm(formula = post ~ school) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-8.8333 -5.0833 -0.6667  3.0000 14.1667  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   80.833      2.794  28.933 5.67e-11 *** 

school         5.667      3.951   1.434    0.182     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 6.843 on 10 degrees of freedom 

Multiple R-squared:  0.1706,    Adjusted R-squared:  0.08766  

F-statistic: 2.057 on 1 and 10 DF,  p-value: 0.182 

 

We can see from the output that the mean value for group 2 is 80.833 and the 

difference between the groups is 5.667. The t-value is 1.434 and the F statistic 



is 2.057 which is equal to 1.434*1.434.  In this example we would fail to reject 
H0. 

 

We will also use the lm() function for ANOVA.  This test will look at the 

difference between the three types of professional development. 

 
model2<-lm(post~PD1+PD2) 

> summary(model2) 

 

Here is the output 
 

Call: 

lm(formula = post ~ PD1 + PD2) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-10.750  -3.062   0.875   3.750   9.500  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   85.750      3.623  23.669 2.05e-09 *** 

PD1           -6.000      5.123  -1.171    0.272     

PD2           -0.250      5.123  -0.049    0.962     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 7.246 on 9 degrees of freedom 

Multiple R-squared:  0.1632,    Adjusted R-squared:  -0.02273  

F-statistic: 0.8778 on 2 and 9 DF,  p-value: 0.4485 

 

The output tells us that 85.750 is the mean of group 3, there is a -6.0 point 
difference between group 1 and group 3 and an -0.250 point difference between 

group 2 and group 3.  The F statistic is 0.878 and just as in the ANOVA 
example we fail to reject Ho. 

 

ANCOVA using Linear Regression 
 

We will continue to use “profdev2” but in order to do the ANCOVA we must first 
test the assumption of equal lopes.  In order to do this we need to come up 
with interaction variables between the pretest and the grouping variable. In 

this case, prePD1 will be the pretest score multiplied by the PD1 variable and 
prePD2 will be the pretest score multiplied by the PD2 variable.   We will then 
compare the full model with the reduced model 
 

> prePD1<-pre*PD1 # creates new variable prePD1 

> prePD2<-pre*PD2 # creates new variable prePD2 



#Full model Regression 

> fullmodel<-lm(post~pre+PD1+PD2+prePD1+prePD2) 

> summary(fullmodel) 

 

Here is the output for the full model: 
 

Call: 

lm(formula = post ~ pre + PD1 + PD2 + prePD1 + prePD2) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-4.3182 -2.2135  0.1889  1.1567  6.2967  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  31.9258    21.7789   1.466   0.1930   

pre           0.6770     0.2728   2.482   0.0477 * 

PD1         -34.3838    36.7618  -0.935   0.3857   

PD2         -16.4444    30.7602  -0.535   0.6121   

prePD1        0.3837     0.4688   0.818   0.4444   

prePD2        0.1419     0.3721   0.381   0.7161   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 3.944 on 6 degrees of freedom 

Multiple R-squared: 0.8347,     Adjusted R-squared: 0.697  

F-statistic:  6.06 on 5 and 6 DF,  p-value: 0.02431 

 

#reduced model 

> redmodel<-lm(post~pre+PD1+PD2) 

> summary(redmodel) 

 

Here is the output for the reduced model: 
Call: 

lm(formula = post ~ pre + PD1 + PD2) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.4088 -2.0926 -0.7466  1.5622  6.9047  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  21.1829    12.2438   1.730 0.121865     

pre           0.8122     0.1523   5.331 0.000701 *** 

PD1          -4.3757     2.5649  -1.706 0.126408     

PD2          -5.1230     2.7058  -1.893 0.094940 .   

--- 



Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 3.602 on 8 degrees of freedom 

Multiple R-squared: 0.8162,     Adjusted R-squared: 0.7473  

F-statistic: 11.84 on 3 and 8 DF,  p-value: 0.002593 

 

We will now compare the full and reduced models to see if the interaction term 
is significant. 
 
# compares the two models 

> anova(fullmodel, redmodel) 

Analysis of Variance Table 

 

Model 1: post ~ pre + PD1 + PD2 + prePD1 + prePD2 

Model 2: post ~ pre + PD1 + PD2 

  Res.Df     RSS Df Sum of Sq      F Pr(>F) 

1      6  93.338                            

2      8 103.777 -2    -10.44 0.3355 0.7276 

 

  
From this formula, we see that the difference is not significant, F = 0.34.  Now 

we can move on with the ANCOVA in which we test the full model with pre, 
PD1 and PD2 with the reduced model which only had PD1 and PD2. 
 

> fullmodel2<-lm(post~pre+PD1+PD2) #creates full model 

> reducedmodel2<-lm(post~PD1+PD2)  #creates reduced model 

> anova(fullmodel2,reducedmodel2)  #compares the two models 

 

Output 
Analysis of Variance Table 

 

Model 1: post ~ pre + PD1 + PD2 

Model 2: post ~ PD1 + PD2 

  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     

1      8 103.78                                   

2      9 472.50 -1   -368.72 28.424 0.0007013 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

We get F = 28.424, which is significant.  Since we were testing the pre part of 
the model we can say that the pretest is significant.  Lastly we need to test the 

group difference.  The full model in this test will have pre, PD1 and PD2 (which 
we have already done). The reduced model will only have pre.  This will allow 

us to test the group difference. 
 
> reducedmodel3<-lm(post~pre) #creates the new reduced model 

> anova(fullmodel2, reducedmodel3) # compares the two models 



Output 
Analysis of Variance Table 

 

Model 1: post ~ pre + PD1 + PD2 

Model 2: post ~ pre 

  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

1      8 103.78                            

2     10 163.05 -2   -59.274 2.2847 0.1641 

> 

 
Comparing these models gives us an F = 2.287 which is not significant, so the 
group difference is not significant. 

 

ANCOVA using Johnson Neyman Technique 
 
The following data contains pretest and posttest scores for 20 students who 

received either an intervention, group 1 or were the control group, group 0.  We 
will call this data “intervention” 

 

ID Group Pre Post 

1 1 45 34 

2 1 21 10 

3 1 38 26 

4 1 38 22 

5 1 49 31 

6 1 41 27 

7 1 39 24 

8 1 44 22 

9 1 47 20 

10 1 49 24 

11 0 38 42 

12 0 35 48 

13 0 41 29 

14 0 44 34 

15 0 24 47 

16 0 26 42 

17 0 38 45 

18 0 34 46 

19 0 27 44 

20 0 44 45 

 
 



 We would like to analyze this data by using the ANCOVA model since we have 
one qualitative independent variable (group) and one quantitative independent 

variable (pretest).  First we need to test the assumption of equal variance.  In 
this case we want to see if the interaction term (pregroup) is significant.  As 

before, in order to do this we need to test the full model against the reduced 
model.   The full model will have pre, group and pregroup as predictors and the 
reduced model will have pre and group as predictors.  We will then compare 

the models to see if there is a significant difference between the two.  
Remember first call and attach the new file “intervention”. 
 
#creates the new interaction variable preGroup 

> preGroup<-Group*Pre  
# creates the full model 

> fullmodel<-lm(Post~Group+Pre+preGroup)  

# creates the reduced model 

> redmodel<-lm(Post~Group+Pre)  

> anova(fullmodel, redmodel) # Compares the full and reduced model 

 
 
 Output of the comparison test 
Analysis of Variance Table 

 

Model 1: Post ~ Group + Pre + preGroup 

Model 2: Post ~ Group + Pre 

  Res.Df    RSS Df Sum of Sq      F   Pr(>F)    

1     16 443.50                                 

2     17 691.12 -1   -247.62 8.9331 0.008679 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> 

 

From the F statistic and the subsequent p value, we can see that the 
interaction term is significant and therefor the slopes are not homogeneous.  

Due to this fact, we will need to use the Johnson Neyman Technique. Take note 
of the residual Sum of Squares (443.50).  This will be used in the Johnson 
Neyman calculations.  Now we need to look at the regression model for the two 

groups separately 
 
#subsets the data to include only Group 1 and attaches the file 

> int2<-subset (intervention, Group==1) 

> attach(int2) 

 

Informational output  
The following object is masked from int: 

 

    Group, ID, Post, Pre 

 



# gets the pretest mean which we will use later 

> mean(Pre) 

Output of the mean 
 

[1] 41.1 

 

# gets the pretest standard deviation which we will use later 

> sd(Pre) 

 

Output of the standard deviation 
 

[1] 8.238797 

 

# regression model for group 1 

> modelgroup1<-lm(Post~Pre) 

> summary(modelgroup1) 

 

Output of the regression model for group 1 
Call: 

lm(formula = Post ~ Pre) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-7.3416 -3.3858  0.4726  2.9239  7.7911  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   0.7219     8.1625   0.088   0.9317   

Pre           0.5664     0.1951   2.903   0.0198 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 4.822 on 8 degrees of freedom 

Multiple R-squared:  0.513,     Adjusted R-squared:  0.4521  

F-statistic: 8.427 on 1 and 8 DF,  p-value: 0.0198 

 

Now we will do the same for the control group, group 0. 
# subsets data to only unclude group 0 and attaches it 

> int3<-subset(intervention, Group==0) 

> attach(int3) 

 

Informational output 
 

The following object is masked from int2: 

 

    Group, ID, Post, Pre 

The following object is masked from int: 



 

    Group, ID, Post, Pre 

 

# gets the pretest mean which we will use later 

> mean(Pre) 

 

Output of the mean 
 

[1] 35.1 

 

# gets the pretest stand dev which we will use later 

> sd(Pre) 

 

Output of the standard deviation 
 

[1] 7.324995 

 

#regression model for group 0 

> modelgroup0<-lm(Post~Pre) 

> summary(modelgroup0) 

 

Output of the regression model for group 0 
 

Call: 

lm(formula = Post ~ Pre) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-10.8884  -3.1674   0.6936   3.7944   6.2870  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  55.9522     9.2373   6.057 0.000303 *** 

Pre          -0.3918     0.2582  -1.518 0.167579     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 5.673 on 8 degrees of freedom 

Multiple R-squared:  0.2235,    Adjusted R-squared:  0.1265  

F-statistic: 2.303 on 1 and 8 DF,  p-value: 0.1676 

 

In order to calculate to the Johnson Neyman calculations, we need the 
following information: the mean X value, standard deviation of the X value, 

slope and intercept for both groups, the sum of squares residual for the 
interaction and the critical F value.  Once you have that, there is a great 
Johnson-Neyman Calculator created by Dr. T. Chris Oshima which can be 

found at http://education.gsu.edu/coshima/stat3.htm.   



 
From our output we can collect the needed information to perform the 

calculations. 
 

 

 Group 0 Group 1 

n 10 10 

X mean 35.1 41.1 

SD for X 7.32 8.24 

Slope -.3918 .5664 

intercept 55.9522 .7219 

 

Residual Sum of Squares: 443.50 
Critical F: 3.633 

 
 
From the Johnson Neyman calculator we obtain the following 

XL:- 0.59546302   XU: 0.61173388 
  
We can conclude that for individuals having a pretest score of less than            

-0.595, the intervention was not effective and for those with a pretest score 
greater than .612 the intervention was effective.  There was no statistical 

difference between the intervention and control for students with pretest scores 
between -0.595 and .612. 
 

 

Conclusion 
 

R is a free program that is useful when going a variety of statistical analysis.  R 
might seem overwhelming and have a rather steep learning curve if you have 
no programming background.  However, once you get the hang of it, it can be 

pretty a pretty easy yet powerful program. As with anything, it takes practice to 
become comfortable with using it.  A good suggestion would be to try to use it 
on small problems and exercises along with a program that you are familiar 

with.   This will allow you to ease into the program and give you confidence in 
your skills when your answers are verified with the other software.  Don’t get 

frustrated; often mistakes are due to improperly typing in a command or 
variable name.   There are also a lot of websites to help you with basic 
commands in R as well as take you deeper into what R can do. 
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